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ABSTRACT
We present measurements of both scale- and time-dependent deviations from the standard
gravitational field equations. These late-time modifications are introduced separately for rel-
ativistic and non-relativistic particles, by way of the parameters Gmatter(k, z) and Glight(k, z)
using two bins in both scale and time, with transition wavenumber 0.01 Mpc−1 and redshift
1. We emphasize the use of two dynamical probes to constrain this set of parameters, galaxy
power-spectrum multipoles and the direct peculiar velocity power spectrum, which probe
fluctuations on different scales. The multipole measurements are derived from the WiggleZ
and Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxy redshift surveys and
the velocity power spectrum is measured from the velocity sub-sample of the 6-degree Field
Galaxy Survey. We combine these measurements with additional cosmological probes. Using
a Markov Chain Monte Carlo likelihood analysis, we find the inferred best-fitting parameter
values of Gmatter(k, z) and Glight(k, z) to be consistent with the standard model at the 95 per cent
confidence level. We expand this analysis by performing Bayesian model selection between
our phenomenological model and general relativity. Using the evidence ratio we find ‘no
support’ for including modifications to general relativity. Furthermore, accounting for the
Alcock–Paczynski effect, we perform joint fits for the expansion history and growth index
gamma; we measure γ = 0.665 ± 0.067 (68 per cent CL) for a fixed expansion history, and
γ = 0.73+0.08

−0.10 (68 per cent CL) when the expansion history is allowed to deviate from � cold
dark matter. For the latter case, we observe a 2σ tension with the standard model where
γ = 0.554.
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1 IN T RO D U C T I O N

The observation of an accelerating cosmic expansion rate has likely
provided an essential clue for advancing our theories of gravitation
and particle physics (Witten 2001). Interpreting and understanding
this feature of our Universe will require both observational and
theoretical advancement. Observationally it is critical that we both
scrutinize the standard vacuum energy interpretation and thoroughly
search for unexpected features resulting from exotic physics. Such
features may exist hidden within the clustering patterns of galaxies,
the coherent distortion of distant light rays, and the local motion of
galaxies; searching for these features is the goal we pursue herein.

�E-mail: asjohnson@swin.edu.au

Either outcome will facilitate progress: failure to detect unex-
pected features, confirming a truly constant vacuum energy, will
give credence to anthropic arguments formulated within String The-
ory (Susskind 2003). New observational signatures should then be
targeted (e.g. Bousso, Harlow & Senatore 2013). Alternatively, an
observed deviation from a cosmological constant would indicate
a new dynamical dark energy (DE) component or a modification
to Einstein’s field equations (Copeland, Sami & Tsujikawa 2006;
Clifton et al. 2012). Independent of observational progress, histor-
ical trends in science may offer an independent tool to predict the
fruitfulness of each interpretation (Lahav & Massimi 2014).

The possibility of new physics explaining the accelerating ex-
pansion has inspired an impressive range of alternative models. As
such, a detected deviation from the standard model will not present
a clear direction forwards, that is, interpreting such a deviation
will be problematic. One potential solution, which we adopt, is to
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analyse observations within a phenomenological model that cap-
tures the dynamics of a large range of physical models (e.g. Bean
& Tangmatitham 2010; Daniel et al. 2010; Simpson et al. 2013).
It should be noted that not all approaches that introduce modified
gravity (MG) or DE invoke an artificial separation between the
cosmological constant problem and the problem of an accelerating
expansion (e.g. Copeland, Padilla & Saffin 2012).

To characterize the usefulness of phenomenological models we
consider their ability to describe known physical models: namely,
their commensurability (Kuhn 1970). This property can be under-
stood as describing the degree to which measurements made in
one model can be applied to others. The absence of this property
implies that a measurement should only be interpreted in terms of
the adopted model: a consistency test. Whereas given this property
one can constrain a range of models simultaneously, alleviating the
problem of having to re-analyse each model separately.

Specifically, the model we adopt allows extensions to the standard
� cold dark matter (�CDM) model by introducing general time-
and scale-dependent modifications (Glight and Gmatter) to General
Relativity (Daniel et al. 2010): these parameters vary the relation-
ship between the metric and density perturbations (i.e. they act as
effective gravitational coupling). In this case, the equivalence be-
tween the spatial and temporal metric perturbations is not imposed.
The commensurability of our model to others can then be shown by
proving that Glight and Gmatter capture all the new physics in specific
MG scenarios.

For example, de Felice, Kase & Tsujikawa (2011) show that
by introducing parameters equivalent to Glight and Gmatter one can
provide an effective description of the entire Horndeski class of
models. Importantly, the Horndeski class of models contains the
majority of the viable DE and MG models (Deffayet et al. 2011;
Silvestri, Pogosian & Buniy 2013). An often disregarded caveat is
that the mappings between these gravitational parameters and MG
and DE theories are only derived at linear order. Therefore, until
proved otherwise, the ability of the phenomenological models to
describe physical models is lost when using observations influenced
by non-linear physics. To avoid this reduction in applicability we
will focus on observations in the linear regime. We note this point
has been emphasized elsewhere by, for example, Linder & Cahn
(2007) and Samushia et al. (2014).

In pursuit of deviations from the standard model we use a range
of cosmological observations. In particular, two dynamical probes
will be emphasized: the galaxy multipole power spectrum and ve-
locity power spectrum (for example, Beutler et al. 2014; John-
son et al. 2014). Hitherto, in the context of phenomenological
models with scale-dependence, neither probe has been analysed
self-consistently. In addition we utilize the following cosmological
probes: baryon acoustic oscillations, Type Ia SNe, the cosmic mi-
crowave background (CMB), lensing of the CMB, and temperature–
galaxy cross-correlation (this correlation is caused by the integrated
Sachs–Wolf effect, ISW).

We adopt this combination of probes, direct peculiar velocities
(PVs) and redshift–space distortions (RSDs), to maximize our sen-
sitivity to a range of length-scales. This range is extended as the
sensitivity of both measurements is relatively localized at different
length-scales: RSDs at small scales, and peculiar velocity measure-
ment at large scales (Dodelson 2003). The benefit is an increased
sensitivity to scale-dependent modifications. The properties of, and
physical motivations for, scale-dependent modifications to GR are
discussed by Silvestri et al. (2013) and Baker et al. (2014).

In Section 2, we summarize the adopted phenomenological mod-
els and further motivate their use. Then in Section 3, we outline the

primary data sets used along with the methodology we use to anal-
yse them. Section 4 then presents the secondary data sets we employ.
The results and interpretations of the Markov Chain Monte Carlo
(MCMC) analysis are presented in Section 5, and the conclusions
are outlined in Section 6.

2 M O D I F I E D G ROW T H A N D E VO L U T I O N

2.1 Introduction

Working within the conformal Newtonian gauge, perturbations to
the Robertson–Walker metric can be characterized by two scalar
potentials. One scalar potential describes a temporal perturbation to
the metric ψ , the other a spatial perturbation, φ. The line element
in this case is given by

ds2 = a2[−(1 + 2ψ)dτ 2 + (1 − 2φ)d�x2] , (1)

where a is the scale factor, τ is the conformal time – related to the
proper time of comoving observers by τ = ∫

dt/a(t) – and x the
spatial coordinate. A non-relativistic fluid within this space–time
is characterized in terms of a velocity divergence θ (x, τ ) and a
density perturbation δρ(x, τ ). The cosmic evolution of this fluid is
then determined by its coupling to the metric potentials.

We concentrate on modifying two of the four gravitational
field equations, by requiring energy-momentum conservation
(∇μTμν = 0), or equivalently, by requiring the contracted Bianchi
identity to hold, i.e. ∇μGμν = 0. Enforcing either constraint one
finds the relativistic continuity and Euler equations in Fourier
space:

δ̇m = −θm + 3φ̇, (2)

θ̇m = −Hθm + k2ψ , (3)

where δm ≡ δρm/ρ̄m and H ≡ ȧ/a = (da/dτ )/a, and ρ̄m is the
background matter density. This system of four variables can then
be closed by specifying the gravitational field equations; in particu-
lar, by defining the relationship between the two metric potentials,
and the coupling between the metric potentials and the matter over-
density. In GR these relationships are given by

∇2ψ = 4πGNa2ρ̄mm (4)

φ = ψ , (5)

where GN is Newton’s gravitational constant, and the equations
are defined in terms of the comoving-gauge density perturbation
m = δm + (3H/k2)θm.

2.2 Glight(k, z) and Gmatter(k, z)

We now introduce two dimensionless free parameters Glight and
Gmatter that we use to model deviations to the field equations. Our
model is now specified as (Daniel & Linder 2013)

∇2ψ = 4πGNa2ρ̄mm × Gmatter (6)

∇2(φ + ψ) = 8πGNa2ρ̄mm × Glight . (7)

The first equation governs the motion of non-relativistic parti-
cles, while the second controls the propagation of light along null
geodesics. As a result, Gmatter can be measured using RSDs and di-
rect PVs, and Glight can be measured using weak lensing. Because of
this distinction the two parameters are significantly less correlated
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than models involving a ‘slip’ relation (e.g. Bean & Tangmatitham
2010). Note that the variables {�, μ} in Simpson et al. (2013)
and Zhao et al. (2012) are equivalent to {Glight, Gmatter}. There is
also a trivial re-mapping to the {Q, R} parameters used by Bean &
Tangmatitham (2010), through Gmatter = QR, Glight = Q(1 + R)/2.

To ensure our model can test for a variety of deviations from
GR we allow for both scale- and redshift-dependence: that is,
Glight = Glight(z, k) and Gmatter = Gmatter(z, k). To specify these pa-
rameters we use a high versus low-redshift, large versus small scale
binning approach introduced by Daniel & Linder (2010). Note,
however, that very general functional forms for these parameters
(including scale-dependent terms) have been developed (Silvestri
et al. 2013; Baker et al. 2014). We leave such investigations to future
work.

Our adopted model introduces eight free parameters and requires
one to specify a redshift and wavenumber transition scale, zt and kt.
We set zt = 1 and kc = 0.01 Mpc−1; therefore, we have two redshift
bins (viz., 0 < z < 1 and 1 < z < 2) and two wavenumber bins
(10−4Mpc−1 < k < 10−2Mpc−1 and 0.01 Mpc−1 < k < 0.1 Mpc−1),
while for z > 2 and k < 10−4Mpc−1 GR is restored. The transition
between bins is implemented using an arctan function of width
z = 0.05 and k = 0.001 Mpc−1.

The choice of the bin transitions k = 0.01 Mpc−1 and z= 1 follows
Daniel & Linder (2010, 2013). These values are motivated by the
sensitivity in both redshift and wavenumber of the available data; for
example, the PV measurements add constraints at k < 0.01 Mpc−1

while RSDs add constraints at k > 0.01 Mpc−1. Furthermore, the
redshift deviation is limited to lower redshifts (i.e. z ≤ 2) given the
precision of current CMB constraints.

For our first model, we choose to leave the cosmic expansion
unmodified at the �CDM prediction, and concentrate on the growth
of structure. Henceforth, we will refer to this model as model I.
To calculate the relevant observables (to be discussed in the next
section) we use CAMB and COSMOMC. The modified field equations
(equation 7) are incorporated into CAMB using the publicly available
code ISITGR (Dossett, Ishak & Moldenhauer 2011), and the exact
equations implemented in CAMB are given by Dossett et al. (2011).
Note the only significant difference between the equations employed
in CAMB and equation (7) is that the latter are written within the
synchronous gauge (Ma & Bertschinger 1995).

A few technical comments on the model are unavoidable: First,
superhorizon curvature perturbations need to be conserved indepen-
dent of the form of field equations (Bertschinger & Zukin 2008).
This condition was shown to be satisfied for this model by Pogosian
et al. (2010). Additionally, it is natural to include a smoothness
theory prior on these parameters, however, given the large distance
between the centre of our bins we choose not to include such a prior
(Silvestri et al. 2013). With more accurate data, and hence a larger
number of bins, this argument will no longer be valid. Finally, the
accuracy of any mapping from our model to physical models (i.e.
those derived from an action) relies on the validity of the quasi-
static approximation (QSA). Following the arguments presented in
Silvestri et al. (2013) it is reasonable to include a theoretical prior
to ignore such deviations.

2.3 Varying growth and expansion: {γ , w0, wa}
As more freedom is introduced to model deviations from GR the
precision of the inferred parameters degrades. We must decide then
which features of the standard model to preserve; for example,
to what extent does the expansion history dictate the growth his-
tory. This presents a balancing problem with no clear solution. To

partially circumvent this issue we adopt a second model (which we
label model II). In contrast to our first model, this model includes
only minimal extensions to the standard model. As a result there are
fewer free parameters and more precise tests are possible (although
we none the less introduce deviations to both the expansion and
growth history).

This minimal extension to the standard model using the parame-
ters {w0, wa, γ } has been advocated by Linder & Cahn (2007), Lin-
der (2005), and Simpson & Peacock (2010), and applications have
been presented, for example, by Huterer & Linder (2007). To expand
on this, we introduce deviations to the expansion history through a
time-dependent equation of state w(z), which is expressed in terms
of two free parameters: w0 = w(a = 0) and wa = −(dw/da)|a = 1,
as a function of the redshift w(z) = w0 + waz/(1 + z). Note the
expansion history is still governed by the Friedman equation, there
is simply more freedom in the properties of the DE component.
We introduce deviations in the growth history by parameterizing
the growth rate as f(z) ≡ �m(z)γ , where γ is the growth index;
within GR one expects γ ∼ 0.55. The growth rate is defined by f(a)
≡ dln D(a)/dln a, and D(a) ≡ δ(a)/δ(a = 1).

3 PR I M A RY DATA S E T S : M E T H O D O L O G Y

Below we will outline the measurements we use in Section 5, in
addition to the tools we use to analyse them. A general summary
is provided in Table 1 where the data sets, the measured quantities,
and the fitting ranges adopted are specified. The focus will be on
introducing extensions to the public MCMC code COSMOMC (Lewis
& Bridle 2002) and CAMB (Lewis, Challinor & Lasenby 2000) to
update the range of data sets one can analyse.

3.1 Velocity power spectrum

The radial PVs of galaxies in the local universe induce a fluctuation
in the apparent magnitude m, defined as (Hui & Greene 2006)

δm(z) = [m(z) − m̄(z)] . (8)

The overbar indicates that the variable is being evaluated within a
homogeneous universe, namely, a universe with no density gradients
and therefore no PVs. Recall the apparent magnitude is defined as

m = M + 5 log10(DL(z)) + 25 . (9)

Here M is the absolute magnitude, and DL(z) the luminosity dis-
tance. The presence of large-scale clustering induces fluctuations in
δm(z) from galaxy to galaxy (this is equivalent to a PV), further-
more, these fluctuations are correlated for nearby galaxies (Hui &
Greene 2006; Gordon, Land & Slosar 2007). The magnitude of both
effects can be described by a covariance matrix which we define as
Cm

ij ≡ 〈δmi(zi)δmj (zj )〉. Once a model is specified this covariance
matrix can be calculated as

Cm
ij = G(zi, zj )

∫
dk

2π2
k2Pvv(k, a = 1)W (k, αij , ri , rj ), (10)

where Pvv(k) = Pθθ (k)/k2 is the velocity power spectrum, and
θ = ∇ · v is the velocity divergence. Moreover, the window func-
tion is defined as

W (k, αij , ri , rj ) = 1/3
[
j0(kAij ) − 2j2(kAij )

]
r̂i · r̂j

+ 1

A2
ij

j2(kAij )rirj sin2(αij ) ,
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Table 1. Summary of the data sets used in this analysis. Given model I includes scale-dependent terms, we divide our measurements into three separate groups:
those used to constrain model I and II, only model I, and only model II. This division is indicated by the horizontal lines, and follows the order in which the
categories were introduced.

Cosmological probe Data set Measured quantity Reference

CMB temperature . . . . . . . . . . Planck CT T
l Planck Collaboration XVI (2014c)

CMB polarization . . . . . . . . . . WMAP-9 CE E
l Bennett et al. (2013)

CMB-lensing . . . . . . . . . . . . . . Planck C
φ φ
l Planck Collaboration XVI (2014a)

BAOs . . . . . . . . . . . . . . . . . . . . . 6dFGS rs/DV(z) Beutler et al. (2011)
. . . . . . . . . . . . . . . . . . . . . . . . . . . BOSS DR11 LOWZ DV(rfid

s /rs ) Anderson et al. (2014a)
. . . . . . . . . . . . . . . . . . . . . . . . . . . BOSS DR11 QSA-Ly α H(z)rs, DA/rs Font-Ribera et al. (2014)
. . . . . . . . . . . . . . . . . . . . . . . . . . . BOSS DR11 Ly α H(z)rs, DA/rs Delubac et al. (2014)
Type Ia Supernovae . . . . . . . . . SNLS μ(z) Conley et al. (2011)

Data set extension I

ISW-density cross . . . . . . . . . . WMAP3 C
g T
l Ho et al. (2008)

Velocity power spectrum 6dFGSv Pvv(k) Johnson et al. (2014)
BAO (reconstructed)a WiggleZ DV(rfid

s /rs ) Kazin et al. (2014)
. . . . . . . . . . . . . . . . . . . . . . . . . . . DR11 CMASS DA(z)(rfid

s /rs), H (z)(rs/r
fid
s ) Anderson et al. (2014b)

Power spectrum multipoles DR11 CMASS P0(k), P2(k) Beutler et al. (2014)
. . . . . . . . . . . . . . . . . . . . . . . . . . . WiggleZ (zeff = 0.44) P0(k), P2(k), P4(k) Blake et al. (2011a)b

. . . . . . . . . . . . . . . . . . . . . . . . . . . WiggleZ (zeff = 0.73) P0(k), P2(k), P4(k) Blake et al. (2011a)b

Data set extension II
RSDs . . . . . . . . . . . . . . . . . . . . . 6dFGS fσ 8(z) Beutler et al. (2012)
RSD-BAO-AP . . . . . . . . . . . . . WiggleZ A(z), FAP(z), fσ 8(z) Blake et al. (2012)
RSD-BAO-AP . . . . . . . . . . . . . BOSS CMASS Dv/rs(z), FAP(z), fσ 8(z) Beutler et al. (2014)

Notes. aBoth the reconstructed BAO measurements (CMASS and WiggleZ) have been calculated by marginalizing over the general shape of the correlation
function. Marginalizing over the shape decorrelates the BAO measurement with the power-spectrum multipole measurement, allowing one to fit for both
measurements simultaneously.
bNote, however, these measurement have been updated in this work using an improved methodology.

and,

G(zi, zj )

≡
(

5

ln 10

)2 (
1 − (1 + zi)2

H (zi)DL(zi)

) (
1 − (1 + zj )2

H (zj )DL(zj )

)
,

where αij = cos−1(r̂i · r̂j ), Aij ≡ |r i − rj | and r i is the position
vector of the ith galaxy. This analytic solution for the window
function was presented by Ma, Gordon & Feldman (2011). For
further details on this calculation we refer the reader to Johnson
et al. (2014).

For this analysis, we perform a full likelihood calculation using
the 6dFGSv PV sample. This is done using the covariance matrix
(equation 10). The velocities in this sample are derived by Springob
et al. (2014) using the Fundamental Plane (FP) relation. To calculate
the covariance matrix, we integrate over the wavenumber range
k = 0.0005–0.15 h Mpc−1. For this calculation, we neglect velocity
bias because large-scale information currently dominates in PV
measurements.

Joachimi, Singh & Mandelbaum (2015) recently reported a de-
tection of spatial correlations among offsets in galaxy size from
a FP. Moreover, they highlight that this trend will bias measure-
ments of the velocity power spectra at the 10 per cent level for
k > 0.04 Mpc−1. In relation to this potential source of systematic
bias, we note that Johnson et al. (2014) demonstrated that the veloc-
ity power-spectra measurements were consistent when using PVs
derived from different distance indicators; as such, we argue that
currently this trend does not significantly influence our results.

In order to minimize the influence of poorly understood non-
linear effects a non-linear velocity dispersion component σ PV is
introduced into the diagonal elements of the covariance matrix (Sil-
berman et al. 2001). This nuisance parameter is marginalized over

in the analysis. The covariance matrix is thereby updated:

�ij ≡ Cm
ij + σ 2

PVδij . (11)

One can now define the posterior distribution as z

P (�|δm) = |2π�|−1/2 exp

(
−1

2
δmT�−1δm

)
, (12)

where δm is a vector of the observed apparent magnitude fluctua-
tions. Note the dependence on the cosmological model is introduced
through the covariance matrix.

The model velocity power spectrum is generated using a transfer
function. This can be defined starting from the PV in the syn-
chronous gauge v(s)

p (cf. Ma & Bertschinger 1995).1 As this gauge
is defined in the dark matter rest frame, i.e. there are no temporal
g00 perturbations, a gauge transformation is necessary. Using the
convention of Ma & Bertschinger (1995), we define h and η as the
metric perturbation in the synchronous gauge. Now by moving into
the Newtonian gauge one finds the appropriate transfer function:

Tv(k) = c

k2

(
kα + ρb v(s)

p /(ρb + ρc)
)
, (13)

where k2α = ḣ/2 + 3η.
In Fig. 1, we plot the measurements of Pvv(k) by Johnson

et al. (2014), here the blue (green) points were measured using the
6dFGSv (low-z SNe) sample. For this plot the black line shows the
power-spectrum prediction assuming GR, while the red and orange
lines show the predictions for different values of the post-GR pa-
rameters. For these calculations the Planck best-fitting parameters
are assumed. Additionally, the green line shows the prediction when
using our best-fitting parameter values (see Section 5 for details).

1 Our starting point is set by variables used within CAMB.
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Searching for modified gravity 2729

Figure 1. The velocity power-spectrum Pvv(k) at z = 0 for different parameter combinations of the adopted phenomenological model. The black line shows
the prediction assuming General Relativity, and the orange and red lines illustrate the effect of varying the low-z and high-k bin for Gmatter. For the red line
Gmatter(z < 1; k > 0.01) = 1.8 and for the orange line Gmatter(z < 1; k > 0.01) = 0.3: for these predictions the standard cosmological parameters are fixed at
the Planck best-fitting values, and unless specified otherwise all non-GR parameters are set to be consistent with GR (i.e. set equal to 1). Moreover, the green
line shows the prediction found using the best-fitting parameter values found using set 4 (see Section 5 for details). The best-fitting values here correspond to
the parameter values that maximize the likelihood. The blue and green data points correspond to the 68 per cent confidence intervals for the mean power within
each bin for the 6dFGSv data and the low-z SNe data set constructed in Johnson et al. (2014). The thick black line indicates the mean power predicted by GR
in each k-bin, this is calculated assuming a Planck cosmology.

Note the time evolution of the density perturbation m is set by a
friction term 2Hm and a source term k2ψ . Therefore, by modify-
ing Gmatter one changes the source term to k2ψ ∼ a2Gmatter(k, z)m;
hence, with Gmatter(k, z) > 1 both the late-time clustering and the
amplitude of the velocity power spectrum are enhanced.

3.2 Power-spectrum multipoles

We measured the multipole power spectra of the WiggleZ Survey
data using the direct estimation method introduced by Yamamoto
et al. (2006) and extended by Blake et al. (2011a) and Beutler et al.
(2014). We provide a brief summary of the technique here, referring
the reader to the above papers for a full description.

The redshift–space 2D galaxy power-spectrum P s
g (k, μ), where

μ is the cosine of the angle of the wavevector k with respect to the
line of sight, may be expressed in terms of multipole moments P�(k)
using a basis of Legendre polynomials L�(μ):

P s
g (k, μ) =

∑
even �

P�(k) L�(μ), (14)

where

P�(k) = 2� + 1

2

∫ 1

−1
dμ P s

g (k, μ) L�(μ). (15)

The power-spectrum multipoles provide a form of data compres-
sion; in linear theory all the information is contained in the � = 0,
2, 4 terms, with the first two multipoles dominating the observed
signal.

The rapid estimation technique of using Fast Fourier Transform
(FFT) methods to measure P s

g (k, μ) in bins of k and μ, where
μ is defined with respect to a fixed axis parallel to the line of
sight of the field centre, and then estimating P�(k) by a direct sum
over the binned results using equation (15), has two difficulties.
First, for a wide-area survey the line-of-sight direction with respect

to which μ should be measured will not be fixed. Secondly, at
low k the sum over μ bins is problematic to evaluate due to the
limited number of modes available in Fourier space. The Yamamoto
et al. (2006) method estimates P�(k) using a sum over all galaxies
for each wavevector k on the FFT grid, allowing the line-of-sight
vector to vary for each object and without binning in μ. Window
function effects are included using a similar sum over unclustered
objects. Additive corrections are included for shot noise and for
the discreteness of the grid. The measurements are then binned by
wavenumber k = |k|.

Following the analysis of the WiggleZ baryon acoustic oscilla-
tions (Blake et al. 2011b), we estimated the � = 0, 2, 4 multipole
power spectra in the (9, 11, 15, 22, 1, 3) h survey regions in the
overlapping redshift ranges 0.2 < z < 0.6, 0.4 < z < 0.8, and
0.6 < z < 1.0. We measured the spectra in 14 wavenumber bins of
width k = 0.02 h Mpc−1 in the range 0.02 < k < 0.3 h Mpc−1. For
this analysis, however, we only use the non-overlapping redshift
ranges that we label low-z and high-z. The results for the monopole
and quadrupole are given in Fig. 2.

We determined the covariance matrix of each vector [P0(k), P2(k),
P4(k)] by repeating the measurements in each survey region for
a series of 600 mock catalogues, built from N-body simulations
generated by the method of COmoving Lagrangian Acceleration
(Tassev, Zaldarriaga & Eisenstein 2013). As described by Kazin
et al. (2014), we produced a halo catalogue by applying a friends-
of-friends algorithm to the dark matter particles, and populated the
haloes with mock galaxies using a Halo Occupation Distribution
such that the projected clustering matched that of the WiggleZ
galaxies. The mocks were sub-sampled using the selection function
of each region, and galaxy co-ordinates converted to redshift–space.

We also determined the convolution matrix for each region and
redshift slice, which should be used to project a model multipole
vector to form a comparison with the data given the survey window
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2730 A. Johnson et al.

Figure 2. The monopole, quadrupole, and hexadecapole measurements from the WiggleZ survey, for both the high-z and low-z samples (z = 0.44, 0.73,
respectively). For simplicity we combine the results from the six different survey regions; however, note this is not the format of the data we use, each survey
region has a different window function and therefore is analysed separately.

function. For a wide-angle survey such as the Baryon Oscillation
Spectroscopic Survey (BOSS), determination of the convolution
involves a numerically intensive double sum over randomly dis-
tributed objects (Beutler et al. 2014). However, for the more com-
pact WiggleZ Survey geometry, we found that it was acceptable (in
the sense that any offset was far smaller than the statistical error) to
use a flat-sky approximation, in which FFT methods were used to
convolve a series of unit multipole vectors, generating each row of
the convolution matrix in turn.

In addition to the WiggleZ multipole measurements, we include
the monopole and quadrupole measurements from the BOSS-DR11
CMASS sample presented in Beutler et al. (2014); the reader is
referred to this paper for technical details on the calculation. From
the CMASS sample the l = 0, 2 multipole power spectrum are
calculated for the wavenumber range k = 0.01–0.20 h Mpc−1with

a spacing of k = 5 × 10−3 h Mpc−1. These measurement are
presented for both the North and South Galactic Cap regions at an
effective redshift of zeff = 0.57.

We plot the CMASS multipole measurements in Fig. 3. For this
plot the blue-dashed (red-dashed) lines show the multipole predic-
tions when setting Gmatter(k > 0.01; z < 1) = 1.8 (Gmatter(k > 0.01;
z < 1) = 0.3), while the black lines show the prediction assuming
GR. For these predictions the best-fitting parameters from Planck
are assumed, in addition we set the bias to b = 1.85, the non-Poisson
contribution to shot noise to N = 1800 h−3 Mpc3, and the velocity
dispersion to σ v = 4 h−1 Mpc. Moreover, the orange lines give the
prediction when using our best-fitting model parameters (see Sec-
tion 5 for details). Note, for simplicity the theory predictions have
only been convolved with the North Galactic Cap (NGC) window
function.
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Searching for modified gravity 2731

Figure 3. The monopole and quadrupole power spectrum for both the BOSS-DR11 CMASS survey regions (NGC and SGC). The blue-dashed line shows
the prediction with Gmatter(k > 0.01; z > 1) = 1.8, the red-dashed lines Gmatter(k > 0.01; z < 1) = 0.3; for these predictions the best-fitting parameters from
Planck are assumed and we set the bias to b = 1.85, the non-Poisson contributions to the shot noise to N = 1800 h−3 Mpc3, and the velocity dispersion to
σv = 4 h−1 Mpc. In this plot, for simplicity, the theory predictions have only been convolved with the NGC window function. The orange lines gives the
prediction from the best-fitting model parameters (see Section 5 for details), convolved with the NGC window function. Note, for the final analysis we only fit
our model to kmax = 0.10 h Mpc−1.

3.2.1 Modelling the power-spectrum multipoles

To model the redshift–space 2D galaxy power-spectrum P s
g (k, μ)

we use linear theory plus an empirical Gaussian damping term
(Hatton & Cole 1998); the resulting model is given by

P s
g (k, μ) = [

Pgg(k) − 2μ2Pgθ (k) + μ4Pθθ (k)
]
D(μ, k) , (16)

where D(μ, k) = exp [−(kfμσ v)2]. The standard interpretation of
this damping, which is clearly observed in redshift surveys, is the
uncorrelated pairwise velocity dispersion of galaxies. We absorb
our ignorance by treating σ v as a free parameter to be marginalized
over for each survey.

Assuming linear theory the continuity equation (equation 3) can
be written in Fourier space as

θ (k) = −f (a)δ(k) . (17)

However, we are modifying the gravitational field equations, so
one needs to be self-consistent, given that the modifications (equa-
tion 7) will change the growth rate in a scale-dependent manner.
We calculate this modified scale-dependent growth rate as

f (k, a) = d ln c(k, a)

d ln a
. (18)

This is self-consistent given CAMB contains all the relevant physics,
i.e. the density and velocity variables are evolved according to
the modified field equations. As a reminder of the potential scale-
dependence we write the growth rate as f(k). Note, for both the
CMASS and WiggleZ multipoles the standard Poisson shot noise
(1/n̄) has been subtracted. However, for the CMASS multipoles
(reflecting the approach taken by Beutler et al. 2014) we include
a free parameter N to account for non-Poisson contributions to
the shot noise (Baldauf et al. 2013). Now assuming a local, scale-
independent linear bias (δg = bδ) and no velocity bias (θg = θ )
equation (16) reduces to

P s
g (k, μ) = b2 (Pδδ(k) + N )

(
1 + f (k)μ2/b

)2
D(μ, k). (19)

To justify the previous assumptions we truncate the fit for both the
WiggleZ and CMASS multipoles to relatively large scales; to wit,
we set kCMASS

max = 0.10 h Mpc−1and kWiggleZ
max = 0.15 h Mpc−1. The

WiggleZ measurements are used to a higher wavenumber because
of the smaller bias of the sample (b ∼ 1), in addition to the larger
error bars.2 The satellite fraction of the sample will also influence

2 With a lower biased tracer, for example, the effect of non-local halo bias
is less significant (Chan, Scoccimarro & Sheth 2012).

MNRAS 458, 2725–2744 (2016)

 at Sw
inburne U

niversity of T
echnology on M

ay 18, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


2732 A. Johnson et al.

the wavenumber at which non-linear (one-halo) contributions are
significant. On this point, we note that Halo Occupation Distribution
fits to the projected clustering of WiggleZ galaxies (Koda et al.
2015) show that WiggleZ galaxies have a satellite fraction consistent
with zero, and the projected clustering can be produced by central
galaxies alone.

The matter power spectrum is calculated within CAMB using only
linear theory: we choose not to incorporate non-linear corrections
via HALOFIT. The use of HALOFIT presents an issue as the corrections
have not been shown to be valid for general MG models.

In order to correctly interpret RSD measurements one is required
to consistently incorporate our ignorance of the expansion history
of the universe (viz., H(z)), bearing in mind that these measure-
ments are performed assuming a fiducial cosmological model. As a
result, in a trial cosmology, the growth-rate measurements should be
adapted using the covariance with the Alcock–Paczynski (AP) dis-
tortion. Any discrepancy between the chosen fiducial expansion his-
tory (D̂A(z), Ĥ (z)) and the physical expansion history (DA(z), H(z))
can be accounted for by scaling the true (physical) radial and tangen-
tial wavenumbers (ktrue

‖ , ktrue
⊥ ). The amplitude of the wavenumber

scalings is determined by

α‖ = H fid(z)

H (z)
, α⊥ = DA(z)

Dfid
A (z)

. (20)

Hence the observed wavenumbers are given by kobs
‖ = α‖ktrue

‖ , and
kobs

⊥ = α⊥ktrue
⊥ . Including this scaling in equation (19) one finds

(Ballinger, Peacock & Heavens 1996; Matsubara & Suto 1996;
Simpson & Peacock 2010)

P s
g (k′, μ′) = b2

α2
⊥α‖

[
1 + μ′2

(
1 + β

α2
‖/α

2
⊥

− 1

)]2

×
[

1 + μ′2
(

α2
⊥

α2
‖

− 1

)]−2

×Pδδ

⎡
⎣ k′

f⊥

√√√√1 + μ′2
(

α2
⊥

α2
‖

− 1

)⎤
⎦ × D(μ, k), (21)

where k′ =
√

(kobs
⊥ )2 + (kobs

‖ )2, μ′ = kobs
‖ /k′, and β = f/b. This

scaling introduces a new source of anisotropy in the clustering of
galaxies, making it partially degenerate with RSD effects, accord-
ingly it is important to account for this effect in this type of analysis
(Blake et al. 2012; Beutler et al. 2014).

Two components must be included to compare our theoretical
predictions with observations: the window function and integral
constraint effect, both of which result in a distortion to the mea-
sured power spectrum relative to the true power spectrum. Window
function effects are induced by the complex geometry of the survey
(viz., a non-cubical geometry); and the integral constraint effect oc-
curs as the condition δk = 0 = 0 is applied to the data: this imposed
normalization for the k = 0 mode is invalidated by supersurvey
modes. Both effects induce a suppression of power at low-k (Pea-
cock & Nicholson 1991; Beutler et al. 2014).

A consistent comparison between our model and the observations
therefore requires us to include the window function effects in our
modelling. Following Beutler et al. (2014) the convolved multipoles
P conv

l (k) are calculated for the CMASS sample as

P conv
� (k) = 2π

∫
dk′k′2 ∑

L

P
theory
L (k′)|W (k, k′)|2�L − P ic

l (k) , (22)

where

∣∣W (k, k′)
∣∣2

�L
= 2i�(−i)L(2� + 1)

Nran∑
ij ,i =j

wFKP(xi)wFKP(xj )

j�(k|x|)jL(k′|x|)L�(x̂h · x̂)LL(x̂h · x̂) ,

and the integral constraint term is given by

P ic
� (k) = 2π

|W (k)|2�
|W (0)|20

∫
dk′k′2 ∑

L

P
theory
L (k′)|W (k′)|2L

2

2L + 1
.

Here jL are spherical Bessel functions of order L, Nran is the num-
ber of galaxies in the synthetic catalogue, and we sum over the
monopole and quadrupole (L = 0, 2).

Each survey region has a different window function and hence
needs to be treated separately. To compute the CMASS likelihood
we use the publicly available CMASS window functions.3 For ex-
ample, the WiggleZ likelihood is computed as

−2 ln
(LWiggleZ

)
=

12∑
i=1

(PWiggleZ
i − PConv

i )TĈ−1
Wig,i(PWiggleZ

i − PConv
i ) .

The i indices specify the two redshift bins and six survey regions
for WiggleZ, and Pconv

i = [P conv
0 (k), P conv

2 (k), P conv
4 (k)]i . The hat

in on the covariance matrix indicates that we are using a statisti-
cal estimator for the inverse covariance matrix. This estimator is
determined by the covariance matrix measured from mock cata-
logues: typically one would use Ĉ−1 = C−1

mock, however, the noise
in the derived covariance matrix (C−1

mock) makes this estimator biased
(Hartlap, Simon & Schneider 2007). We correct this bias using the
estimator4

Ĉ−1 = Ns − nb − 2

Ns − 1
C−1

mock, (23)

where nb is the number of power-spectrum bins, and Ns the number
of mock realizations used to construct the covariance matrix.

3.3 BAOs

Acoustic oscillations in the photon–baryon plasma, prior to recom-
bination, imprint a series of fluctuations in large-scale structure:
in configuration-space one finds a preference for galaxies to be
distributed with a given comoving separation (∼105 h−1 Mpc).

This excess in clustering (the BAO feature) functions as a cosmic
yard-stick allowing the cosmic expansion history to be mapped out.
By measuring the spherically averaged BAO position one deter-
mines

DV(z) = [
cz(1 + z)2DA(z)2/H (z)

]1/3
. (24)

Here DA(z) is the angular diameter distance. With higher signal-to-
noise measurements one can extract more information by isolating
the transverse and line-of-sight BAO positions, determining

αperp = DA(z)rfid
s /Dfid

A (z)rs (25)

αpar = Hfid(z)rfid
s /H (z)rs. (26)

3 https://sdss3.org/science/boss_publications.php
4 Note, we neglect the secondary correction to this term introduced by
Percival et al. (2014). We estimate the magnitude of this effect, which is an
error-in-the-error, to be around 5 per cent.
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Searching for modified gravity 2733

By including the dependence on rs (the sound horizon at the
drag epoch), and expressing the measured quantity as a ratio of
the fiducial prediction, the dependence on CMB physics and the
assumed cosmology has been made explicit.

To constrain the expansion history we use the following BAO
measurements: WiggleZ reconstructed from Kazin et al. (2014), re-
constructed DR11–CMASS and DR11–LOWZ from Anderson et al.
(2014b), and the 6dFGS measurement from Beutler et al. (2011).
By ‘reconstructed’ we are referring to the process of sharpening
the acoustic peak by using information from the local density field
(cf. Padmanabhan et al. 2012). The above measurements (excluding
CMASS) can be incorporated into a likelihood given by

− 2 lnL = (x − S)T C−1(x − S) , (27)

with the theory vector

x = [DV (0.44)(rfid/rs),DV (0.6)(rfid/rs), DV (0.73)(rfid/rs)

DV (0.32)/rd, rs/DV (0.106)] , (28)

the data vector

S = [1716, 2221, 2516, 8.25, 0.336] , (29)

and the covariance matrix5

C−1
BAO =

⎛
⎜⎜⎜⎜⎝

2.17898 1.11633 0.46982 0 0
1.11633 1.70712 0.71847 0 0
0.46982 0.71847 1.65283 0 0

0 0 0 36.025 0
0 0 0 0 4444.4

⎞
⎟⎟⎟⎟⎠.

The CMASS measurements are in the form of probability dis-
tributions for P(αperp) and P(αpar) evaluated at zeff = 0.57. These
measurements are therefore analysed separately, for details see An-
derson et al. (2014b). A number of these BAO measurements have
been calculated using the approximate fitting formula for rs(zd) from
Eisenstein & Hu (1998); hence throughout, where appropriate, the
BAO measurements derived using this approximation are scaled to
be consistent with the result from CAMB (cf. Mehta et al. 2012).

To further improve the redshift range of our expansion history
measurements we extend this ‘base’ sample by including the Ly-
man α BAO measurement from Delubac et al. (2014), and the
Quasar–Ly α cross-correlation measurement from Font-Ribera et al.
(2014). The measurements are DH(z = 2.34)/rs = 9.18 ± 0.28 ,
DA(z = 2.34)/rs = 11.28 ± 0.65 , DH(z = 2.36)/rs = 9.0 ± 0.3 ,
DA(z = 2.36)/rs = 10.8 ± 0.4 , where DH = c/H. Both com-
mon cosmic variance or a common source for the measurement
error would induce correlations between the Lyman α measure-
ment. Fortunately, the origin of the dominant error components
for these measurements are distinct, and hence the measurements
are uncorrelated (Font-Ribera et al. 2014). Additionally, we treat
any correlations between the BOSS and WiggleZ surveys as in-
significant, given the small overlapping area (∼550 deg2) and the
significance of shot noise in WiggleZ measurements (Beutler et al.
2016).

3.4 Growth-rate and Alcock–Paczynski measurements

The growth-rate measurements presented in this section will
be used to constrain γ . Following the arguments presented in

5 We have scaled the WiggleZ elements for clarity; the true covariance
matrix is obtained by scaling the WiggleZ elements by 10−4: CTrue −1

BAO (1,1) =
2.17898 × 10−4.

subsection 3.2.1 we only include growth-rate constraints that have
consistently incorporated the AP effect. The exception to this point
is for very low-redshift observations, which are effectively insensi-
tive to changes in the expansion history.

In order to self-consistently express the degeneracy with the ex-
pansion history we chose to fit to joint 3D posterior distributions
from AP, BAO, and RSD measurements: as opposed to marginal-
ized 1D constraints on fσ 8(z). The growth-rate measurements we
utilize are measured from BOSS-DR11 survey, the WiggleZ Dark
Energy Survey, and the 6dF Galaxy survey (Beutler et al. 2012,
2014; Blake et al. 2012). For the CMASS sample we use the data
vector6

SBOSS
kmax=0.20 = [DV (0.57)/rs(zd ), FAP(0.57), f (0.57)σ8(0.57)]

= [13.88, 0.683, 0.422] , (30)

where the AP effect translates into a geometric constraint on
FAP(z) = (1 + z)DA(z)H(z)/c. And the corresponding symmetric
covariance matrix is given by

103CBOSS
kmax=0.20 =

⎛
⎝ 36.400 −2.0636 −1.8398

1.0773 1.1755
2.0438

⎞
⎠. (31)

The WiggleZ survey measurements are performed within three
overlapping, hence correlated, redshift bins at zeff = 0.44, 0.60,
0.73. We first split the data vector into redshift bins, namely
SWiggleZ

kmax=0.30 = (Sz1 ,Sz2 ,Sz3 ). In each of these redshift bins Blake
et al. (2012) measure the parameter combination

Szi = [A(zi), FAP(zi), f (zi)σ8(zi)] , (32)

where A(z), the acoustic parameter, is given by

A(z) ≡ 100DV(z)
√

�mh2

cz
. (33)

The measured values are now Sz1 = (0.474, 0.482, 0.413), Sz2 =
(0.442, 0.650, 0.390), and Sz3 = (0.424, 0.865, 0.437). Table 2 in
Blake et al. (2012) gives the full covariance matrix for SWiggleZ.

The final measurement we use is f(0.067)σ 8(0.067) =
0.423 ± 0.55 from Beutler et al. (2012). As noted previously, the AP
effect is not significant for this measurement given the low-redshift
nature of the sample. All of the introduced measurements are now
incorporated using the likelihood

− 2 lnL = (x − S)T C−1(x − S) , (34)

here x, S, and C are the appropriate theory vector, data vector, and
covariance matrix. Note that BAO information is included in both
Sections 3.3 and 3.4 and we do not double-count this information.

4 SEC O N DA RY DATA SETS

A brief introduction and motivation is given for the additional data
sets we use.

4.1 Type Ia SNe

Sample variance effectively imposes a minimum volume limit for
BAO detection. Accordingly, large volumes and hence higher red-
shift observations are preferable. Type Ia SNe measurements do not
have this restriction and hence can provide very accurate constraints

6 This result is found fitting the power-spectrum multipoles to kmax = 0.20
h Mpc−1.
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Table 2. Cosmological parameters used in our analysis. For each we give the symbol, uniform prior range, value taken in the �CDM cosmology, and summary
definition. The parameters with a specified prior range are treated as free parameters in the MCMC analysis, while the remaining parameters are fixed at their
fiducial values. The first block contains the standard parameters present in the �CDM model, while the second and third contain the parameters introduced to
allow modifications from General Relativity. Note a prior is included on the derived parameter H0.

Parameter Prior range Baseline Definition

ωb ≡ �bh2 . . . . . . . . . . [0.005, 0.1] – Baryon density today
ωc ≡ �ch2 . . . . . . . . . . [0.001, 0.99] – Cold dark matter density today
100θMC . . . . . . . . . . . . . [0.5, 10.0] – 100 × approximation to r∗/DA

τ . . . . . . . . . . . . . . . . . . . [0.01, 0.8] – Thomson scattering optical depth due to reionization
ns . . . . . . . . . . . . . . . . . . [0.9, 1.1] – Scalar spectrum power-law index (k0 = 0.05 Mpc−1)
ln (1010As) . . . . . . . . . . [2.7, 4.0] – log power of the primordial curvature perturbations (k0 = 0.05 Mpc−1)
�K . . . . . . . . . . . . . . . . . 0 Curvature parameter today with �tot = 1 − �K∑

mν . . . . . . . . . . . . . . . 0.06 The sum of neutrino masses in eV
Neff . . . . . . . . . . . . . . . . 3.046 Effective number of relativistic degrees of freedom

Parameters model I
zt . . . . . . . . . . . . . . . . . . 1.0 Transition redshift for GR modifications
kt . . . . . . . . . . . . . . . . . . 0.01 Transition wavenumber for GR modifications ( Mpc−1)
Glight(k, z) . . . . . . . . . . [−10, 10] 1 Modification to relativistic Poisson equation (equation 7)
Gmatter(k, z) . . . . . . . . . [− 10, 10] 1 Modification to non-relativistic Poisson equation (equation 7)

Parameters model II
w0 . . . . . . . . . . . . . . . . . [−3.0, 1.0] −1 Dark energy equation of state, w(a) = w0 + (1 − a)wa

wa . . . . . . . . . . . . . . . . . [−3, 3] 0 Redshift-dependent modification to the equation of state (see above)
γ . . . . . . . . . . . . . . . . . . [0, 2] 0.55 Power-law index of the structure growth-rate parameter f (z) = �

γ
m

�� . . . . . . . . . . . . . . . . . – Dark energy density divided by the critical density today
�m . . . . . . . . . . . . . . . . . – Matter density (inc. massive neutrinos) today divided by the critical density
σ 8 . . . . . . . . . . . . . . . . . – RMS matter fluctuations today in linear theory
H0 . . . . . . . . . . . . . . . . . [20,100] – Current expansion rate in km s−1 Mpc−1

on the low-redshift expansion rate: an epoch where the presence of
‘dark energy’ appears to dominate.

Therefore, we include the distance modulus measurements for
473 Type Ia SNe presented in Conley et al. (2011). The ‘SNLS’
sample is a combination of a number of previous surveys combin-
ing supernova legacy survey results with other low-z and high-z ob-
servations. These measurements are included in our analysis using
the COSMOMC likelihood module provided by Conley et al. (2011).7

This likelihood is evaluated by (first) calculating the model appar-
ent magnitudes (or more accurately, the rest-frame peak B-band
magnitude):

mmodel = 5 log10 DL(zCMB, zHel, . . .) − α(S − 1) + βC + MB .

Here DL is luminosity distance with the dependence on the Hubble
constant removed (it is dimensionless). And zCMB and zHel are the
CMB frame and heliocentric frame redshifts of the SN. MB is a
parameter which controls the zero-point and is a function of both the
absolute magnitude of the SN and H0, this parameter is marginalized
over. The brightness of each SN is ‘standardized’ using observations
of the shape of the light curve, s, and the colour C; in addition to
the empirical relationship of these parameter with the luminosity of
the object: these dependences are characterized by the parameters
α and β.

Writing the model predictions as a vector mmodel the likelihood
is given by

− 2 lnL = (mobs − mmodel)
T C−1(mobs − mmodel) , (35)

where mobs is a vector of the observed B-band magnitudes. The
elements of the non-diagonal covariance matrix C includes contri-
butions from the following effects: the intrinsic-scatter of Type Ia

7 https://tspace.library.utoronto.ca/handle/1807/25390

SN, the errors on the fitted light-curve parameters, the redshift error,
a host correction error, and the covariance between s, C, and mobs.
There are additional corrections for the local PV field, for further
details see Conley et al. (2011).

In Section 5.5, we adopt a second SNe data set, namely the
JLA sample (Betoule et al. 2014). This sample is composed of
recalibrated SN Ia light curves and distances for the SDSS-II and
SNLS samples; this sample can be distinguished from the SNLS
sample by the treatment of systematic effects, the end result is a
1.8σ shift from the SNLS 3 yr results.

4.2 CMB

For the models we adopt GR is restored at the time of the last
scattering surface; accordingly, the components of the temperature
fluctuations, unmodified by large-scale structure, provide a powerful
tool to both constrain the physical components of the universe and
the initial conditions which seed large-scale structure.

The likelihood code for the power-spectrum CT T
l from Planck is a

hybrid: it is divided into high-l and low-l. For high-l (l > 50) we use
the likelihood code CAMSPEC described by Planck Collaboration XV
(2014b). This algorithm uses temperature maps derived at 100, 143,
and 217 GHz. Once both diffuse Galactic emission and Galactic
dust emission are masked, 57.8 per cent of the sky remains for
the 100 GHz map and 37.3 per cent for the remaining maps. At
low multipoles (2 < l < 49) the likelihood is computed using the
Commander algorithm (Eriksen et al. 2008) using the frequency
range 30–353 GHz over 91 per cent of the sky.

Sub-Hubble modes near reionization are damped by Thomson
scattering, thus obscuring our view of the primordial power spec-
trum: we observe a fluctuation amplitude Ase−2τ . The degener-
acy between the optical depth τ and the amplitude of the pri-
mordial power-spectrum As can be partially broken by including
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Searching for modified gravity 2735

polarization data: the relative amplitude of the polarization and tem-
perature power spectrum constrain τ . For this purpose we include
the large-scale polarization measurements (CEE

l ) from WMAP-9
(Bennett et al. 2013). We use the likelihood code from Planck
which fits to the l-range (2 < l < 32).

4.2.1 CMB lensing

Photons travelling from the last scattering surface to our satellites
encounter a number of over- and underdensities along the way. The
intersected structure deflects the photon paths and the large-scale
clustering of matter causes these deflection paths to be correlated
over the sky (Blanchard & Schneider 1987). The combined effect
of this CMB lensing is a re-mapping of the CMB temperature
fluctuations (cf. Lewis & Challinor 2006):

T (n̂) = T unlensed(n̂ + ∇�(n̂)) , (36)

where �(n̂) is the CMB lensing potential given by

�(n̂) = −
∫ χ∗

0
dχ G(χ, χ∗) [φ(χ n̂; η0 − χ ) + ψ(χ n̂; η0 − χ )] .

(37)

Here χ is the conformal distance, η is the conformal time (η0 is the
time today), and G(χ, χ∗) is a weighting function. The integration is
taken from the last scattering surface (χ∗) to today (χ = 0); hence
this term represents the integrated effect of structure on photon
paths, or more accurately, since we are interested in testing GR, the
integrated effect of spatial and curvature perturbations.

The lensing power-spectrum C
φ φ
l can be extracted from CMB

maps; here we use the results from Planck Collaboration XVI
(2014c) for the l-range 40 < l < 400 (with the bin size l = 64): this
l-range is chosen as it encompasses the majority of the lensing signal
(∼90 per cent) and is likely less influenced by systematic effects (cf.
Planck Collaboration XVI 2014c). Given the lensing kernel peaks
at z ∼ 2 and we are only using l < 400, the lensing power-spectrum
measurements used are only probing linear scales. Accordingly, we
use linear theory to predict the lensing power spectrum and expect
no systematic errors to be introduced from this modelling.

4.2.2 Temperature–galaxy cross-correlation

At late times the accelerating cosmic expansion dictates the evolu-
tion of density perturbations, one consequence is time-dependent
metric potentials. This time-dependence is apparent in the CMB as
it generates a net energy loss for CMB photons as they propagate
through these potential wells (Sachs & Wolfe 1967). This feature is
known as the ISW effect. The influence on the CMB power spectrum
is given by

Cl ∼ (φ̇ + ψ̇) . (38)

The ISW effect induces a correlation between the CMB (low-l) and
large-scale structure probes: this is measured using the temperature–
galaxy cross-correlation power-spectrum C

gT
l (cf. Ho et al. 2008).

For our analysis we use the measurement of C
gT
l presented in Ho

et al. (2008), and the likelihood code described in Dossett et al.
(2011). This likelihood code expands on that presented in Ho et al.
(2008) by including the effects of modified gravitational field equa-
tions.

The density field for the cross-correlation is approximated by the
following measurements: the 2MASS Two Micron All Sky Sur-
vey, the Sloan-Digital Sky Survey Luminous Red Galaxy Sample,

the Sloan-Digital Sky Survey Quasars, and the National Radio As-
tronomy Observatory VLA Sky Survey. And the CMB tempera-
ture data is taken from WMAP-5.8 The final l-range we adopt is
6 < l < 130: this range is taken to ensure linear theory is valid,
specifically, this l-range is imposed to ensure a wavenumber cutoff
of k ≤ 0.05 h Mpc−1.

5 MC MC A NA LY SIS

We sample the parameter space of cosmological parameters using
Markov Chain Monte Carlo techniques with the COSMOMC package.
The MCMC algorithm implemented within this code is an adaptive
Metropolis–Hastings method which utilizes a number of techniques
to ensure fast convergence times. The definitions and adopted priors
of each parameter are given in Table 2. Our results are derived using
eight separate chains which are run until convergence is achieved.
The convergence of the Markov chains is determined using the
Gelman and Rubin convergence criteria, for which chains require
R − 1 < 0.02 to be satisfied for the least-converged orthogonalized
parameter; R being the ratio of the variance of the chains’ mean
and the mean of the chains’ variances (Gelman & Rubin 1992).
The posterior mean and 68 per cent confidence intervals are then
computed using thinned Markov chains.

There is currently no consensus on the H0 value as measured from
Cepheid data. The most up-to-date measurements are presented by
Efstathiou (2014), Riess et al. (2011), and Humphreys et al. (2013):
they measure H0 = 70.6 ± 3.3, 73.8 ± 2.4, 72.0 ± 3 km s−1 Mpc−1,
respectively. Note both Efstathiou (2014) and Humphreys et al.
(2013) have used the revised geometric maser distance to NGC 4258
(as presented in Humphreys et al. 2013), however their measure-
ments still do not agree: the disagreement can be traced to different
outlier rejection criteria being applied. For this analysis we adopt
two approaches, because of this tension. When the expansion his-
tory is described by �CDM we do not include any H0 prior as the
model-dependent constraints from the CMB are sufficient. When
we do include deviations from �CDM in the expansion history we
add an H0 prior using the measurement by Efstathiou (2014).

5.1 Parameter Fits: Model I

Using different combinations of the measurements outlined in the
previous sections, we performed fits to the base �CDM parameters
(ωb, ωc, θMC, τ , ns, As) and the MG parameters Gmatter(k, z) and
Glight(k, z). Recall each MG parameter is binned in both redshift
and scale.

In addition to the physical parameters, a number of nuisance
parameters are introduced to account for unknown astrophysical
effects. For the WiggleZ multipole calculation for each redshift bin
we include the galaxy bias and velocity dispersion as nuisance pa-
rameters, that is, blin(z = 0.44), σ v(z = 0.44), blin(z = 0.73), and
σ v(z = 0.73). The uniform priors imposed on these parameters
are blin ∈ [0.5, 3] and σ v ∈ [0, 10] h−1 Mpc. For the DR11-BOSS
CMASS multipole measurement, we also include galaxy bias and
velocity dispersion as free parameters, blin(z = 0.57), σ v(z = 0.57).

8 Note, the NVSS radio survey is the best tracer of large-scale structure at a
high-redshift: this survey provides the most significant detection of a cross-
correlation. Furthermore, the ISW effect is only dominant at low-l and hence
is limited by cosmic variance. For both reasons, the measurement of C

g T
l

has not been significantly improved from Ho et al. (2008), hence justifying
our use of this data.
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Table 3. The data set combinations we use for fits to Model I, in addition
to the labels we adopt to refer to them. The corresponding data sets should
be clear from the information given in Table 1. We define Base as the
combination High−l + low−l + WP + BAO + SNe. Below CMASS refers
to the monopole and quadrupole multipole measurements from the BOSS–
CMASS sample. And WiggleZ refers to the monopole, quadrupole, and
hexadecapole measurements from WiggleZ (as presented above).

Label Description

SET 1 Base

SET 2 Base + Direct PV

SET 3 Base + CMASS (kmax = 0.10 h Mpc−1)

WiggleZ (k = 0.15 h Mpc−1) + Direct PV

SET 4 Base + CMASS (kmax = 0.10 h Mpc−1) +
WiggleZ (k = 0.15 h Mpc−1) + Direct PV

+ ISW-Density + CMB Lensing

SET 5 Base + ISW-Density

SET 6 Base + CMASS (kmax = 0.10 h Mpc−1)

SET 7 Base + CMASS (kmax = 0.15 h Mpc−1)

SET 8 Base + WiggleZ (kmax = 0.15 h Mpc−1)

SET 9 Base + WiggleZ (kmax = 0.19 h Mpc−1)

Additionally for BOSS, we include a free parameter to account for
the non-Poission contributions to shot noise N, this is given the prior
(N ∈ [0, 2000] h−3 Mpc3).9 For the velocity power-spectrum mea-
surement, we include a velocity dispersion parameter σ PV(z = 0) ∈
[0, 500] km s−1.

In order to understand the sensitivity of each cosmological probe
to the physical parameters, and test for residual systematics, we
analyse different combinations of cosmological probes. The differ-
ent combinations are defined and labeled in Table 3 (henceforth
we will use these definitions). The final results of this section are
displayed in Figs 4 and 5, and further information is provided in
Table 4. The first figure shows the constraints on Gmatter(k, z) and
the second on Glight(k, z). The black-dashed lines in both figures
show the predictions from General Relativity. We do not plot the
2D contours between Gmatter(k, z) and Glight(k, z) as their correla-
tions are small, i.e. 〈|ρc|〉 ∼ 0.15. Here ρc is the cross-correlation
coefficient, and 〈 〉 indicates the average over all the possible values
between Gmatter(k, z) and Glight(k, z). Similarly, we do not plot the
inferred constraints on the base �CDM parameters as, with two
exceptions, the base �CDM parameters are not highly correlated
with the post-GR parameters, the exception being σ 8 and �m with
Gmatter. When averaging over the four Gmatter parameters we find
〈|ρc|〉 ∼ 0.77, 0.39, respectively. The remainder of this section will
involve a discussion of the content of these plots, in addition to
some comments on potential systematics effects and the derived
astrophysical parameters.

As shown in Fig. 4, we observe very little variation in
Glight(k, z) as we add extra data sets to the base sample (the green
contour): this is because the ISW effect on the T–T power spec-
trum is dominating the fit; additionally, galaxy velocities have no
sensitivity to Glight(k, z), so we expect the benefit of including them

9 We note that this shot noise contribution can potentially be negative (Bal-
dauf et al. 2013), therefore one may question whether our imposed prior
is overly constraining. However, we find that the posterior probability dis-
tribution for the CMASS shot noise parameter is well localized within the
range of our chosen prior for all cases considered.

to be minimal. The grey contours in Fig. 4 are derived by adding
the T–g measurements to the base sample, and the red contours are
derived by adding the multipole and velocity measurements to the
base sample. And the blue contours show the main results which
are derived using Set 4. From these measurements for Glight(k, z)
we infer (in terms of 68 per cent CL)

Glight(z > 1; k > 0.01) = 1.057+0.053
−0.045 ,

Glight(z < 1; k < 0.01) = 1.048 ± 0.048 ,

Glight(z < 1; k > 0.01) = 1.153+0.080
−0.068 ,

Glight(z > 1; k < 0.01) = 1.016 ± 0.026.

These measurements are compatible at the 95 per cent CL with GR.
For Gmatter(k, z), we observe a significant amount of variation as

new measurements are added to the base sample. In Fig. 5 the green,
grey, red, and blue contours correspond, respectively, to measure-
ments using the data set combinations Set 1, Set 2, Set 3, Set 4
(sets 6–9 are used for systematics checks to be discussed in the next
section). As derived from Set 4 (i.e. using all the data sets) the 1D
marginalized results for Gmatter (in terms of 68 per cent CL) are

Gmatter(z < 1; k > 0.01) = 0.65 ± 0.43 ,

Gmatter(z < 1; k < 0.01) = 1.22+0.39
−0.34 ,

Gmatter(z > 1; k > 0.01) = 0.53 ± 0.32 ,

Gmatter(z > 1; k < 0.01) = 0.87 ± 0.30 .

Similarly to above, these results are consistent with GR at the
95 per cent CL, while at the 68 per cent CL level we observe a
tension with GR in the high-redshift and large-wavenumber bin.
Furthermore, the constraints from Set 4 on the 2D CL of the low-z
high-k and high-z high-k bins of Gmatter show a tension with the
standard model at greater than 2σ . For the 1D marginalized results
this tension is significantly reduced as the high-z and low-z Gmatter

bins are highly correlated, as can be seen in Fig. 5. This degeneracy
occurs as some probes, such as the CMB, are sensitive to integrated
quantities over redshift, such that higher growth at high-z can be
compensated for by lower growth at low-z.

Introducing direct PV measurements the constraints shift from
the green to the grey contours. The most prominent shift occurs in
the low-z and low-k Gmatter bin, as expected: we find a shift from
Gmatter(z < 1; k < 0.01) = 0.81+0.59

−0.46 to Gmatter(z < 1; k < 0.01) =
1.32+0.42

−0.29. We find further improvements in the constraints for the
high-wavenumber and low-redshift bin. Future PV surveys should
be able to considerably improve on this situation (cf. Koda et al.
2014). Using the best-fitting parameters from Set 4, we measure
χ2

6dFGSv = 778 with 979 data points: the full 6dFGSv velocity field
is smoothed on to a grid with 979 non-empty elements (cf. Johnson
et al. 2014).

Including RSD measurements results in the shift from the grey
to red contours, for which we find a significant improvement in
the constraint on the high-z and high-k Gmatter bin. Moreover, we
find that the RSD measurements have more influence on the high-z
bin than the low-z bin: this is an further consequence of measuring
integrated quantities. As a systematic check we isolate the measure-
ments from WiggleZ and BOSS and perform separate fits, we find
that the two separate constraints on Gmatter are consistent. We can
also assess how well our model fits the observations. By adding the
multipole likelihoods we find χ2 = 322, for a total of 324 mea-
surement points. Individually, for the fit to the WiggleZ multipoles,
with 126 data points per redshift bin we measure χ2

WiggleZ = 129.88
for the low-z region, and χ2

WiggleZ = 121.6 for the high-z region.
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Searching for modified gravity 2737

Figure 4. 68 per cent and 95 per cent confidence regions for the four Glight(k, z) bin parameters. Here, z > 1 is referring to the redshift range 2 > z > 1. Note
all of the parameters specified in Table 2 are being varied in this analysis, however for clarity we only plot the constraints on Glight(k, z) in this plot. Recall we
have defined Base as High−l + low−l + WP + BAO + SNe.

Finally, for BOSS, given we are fitting to kmax = 0.10 h Mpc−1 ,
there are 72 measurement points and we find χ2

CMASS = 72.6.

5.2 Model comparison: Bayesian evidence

To evaluate the statistical significance of deviations from GR we
previously used the marginalized posterior distributions of Gmatter

and Glight. An alternative approach is to use model selection. This
allows one to rank the viability of a series of models based on a
measure (Jeffreys 1961). For cosmological applications see Liddle,
Mukherjee & Parkinson (2006) and Trotta (2008). The philosophy

behind model selection is as follows: simple models with a high
degree of predictability are favoured, equivalently, complex mod-
els with a large number of highly tuned parameters are penalized.
The relevant measure weighs both the ability of the model to fit
observations and its degree of simplicity.

To discriminate between models one first computes the evidence
for each model, E , which is defined as the probability of the data D
given the model M (defined by a set of model parameters θ ):

E = P (D|M) =
∫

P (D|θM)π (θ |M) . (39)
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2738 A. Johnson et al.

Figure 5. 68 per cent and 95 per cent confidence regions for the four Gmatter(k, z) bin parameters. Here, z > 1 here is referring to the redshift range 2 > z > 1.
Note all of the parameters specified in Table 2 are being varied in this analysis yet for clarity we only plot the constraints on Gmatter(k, z). Recall we have
defined Base as High−l + low−l + WP + BAO + SNe.

In our case we will consider two models, M1 and M2, which
represent GR and our phenomenological MG model, respectively.
The ratio of the evidence values is called the Bayes factor, B,
and the value of this indicates a degree of preference for one model
over the other:

B12 =
∫

P (D|θ1M1)π (θ1|M1)∫
P (D|θ1M2)π (θ1|M2)

. (40)

One can extend this calculation by incorporating the posterior
probabilities of the models by adding model priors of the form

π (M). For our case, for simplicity we set π (M1) = π (M2) = 1.
This choice suggests we have no preference (based on physical
intuition) between the models.10

10 Recent work by Gubitosi et al. (2015) suggest a method to incorporate the
philosophical notion of falsifiability into model selection. This additional
selection criteria arises when paradigms are being compared, and results in
a more severe penalty for unfalsifiable paradigms. We will not include this
additional selection effect here.
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Table 4. Cosmological parameter constraints for Model I. The constraints are derived from four different groups of cosmological probes,
we labels these groups Set 1 to 4 and define each in Table 3. For each parameter in each group we provide the 68 per cent confidence
levels. To keep the table a reasonable size we only consider the parameters most relevant to our analysis.

SET 1 SET 2 SET 3 SET 4
Parameter 68 per cent limits 68 per cent limits 68 per cent limits 68 per cent limits

Gmatter(z < 1; k > 0.01) 0.96+1.1
−0.44 0.48+0.59

−0.52 0.66 ± 0.47 0.65 ± 0.43

Gmatter(z < 1; k < 0.01) 0.81+0.59
−0.46 1.32+0.42

−0.29 1.32+0.41
−0.30 1.22+0.39

−0.34

Gmatter(z > 1; k > 0.01) 1.23+0.71
−0.28 1.12+0.81

−0.33 0.54 ± 0.35 0.53 ± 0.32

Gmatter(z > 1; k < 0.01) 0.95+0.42
−0.36 0.88 ± 0.37 0.82 ± 0.32 0.87 ± 0.30

Glight(z > 1; k > 0.01) 1.067+0.063
−0.046 1.066+0.064

−0.045 1.072+0.063
−0.043 1.057+0.053

−0.045

Glight(z < 1; k < 0.01) 1.048 ± 0.048 1.044 ± 0.050 1.048 ± 0.048 1.048 ± 0.048

Glight(z < 1; k > 0.01) 1.12+0.10
−0.078 1.113+0.098

−0.084 1.14+0.10
−0.077 1.153+0.080

−0.068

Glight(z > 1; k < 0.01) 1.015 ± 0.026 1.016 ± 0.027 1.016 ± 0.026 1.016 ± 0.026

�bh2 . . . . . . . . . . . . . . . . . 0.02228 ± 0.00025 0.02227 ± 0.00025 0.02226 ± 0.00025 0.02230 ± 0.00025

�ch2 . . . . . . . . . . . . . . . . . . 0.1172 ± 0.0013 0.1172 ± 0.0013 0.1168 ± 0.0013 0.1163 ± 0.0013

τ . . . . . . . . . . . . . . . . . . . . . 0.087 ± 0.013 0.089+0.012
−0.014 0.089 ± 0.013 0.086 ± 0.012

ln(1010As) . . . . . . . . . . . . . 3.076 ± 0.026 3.081 ± 0.025 3.080 ± 0.025 3.073 ± 0.025

�� . . . . . . . . . . . . . . . . . . . 0.7011 ± 0.0077 0.7009 ± 0.0078 0.7031 ± 0.0074 0.7060 ± 0.0074

�m . . . . . . . . . . . . . . . . . . . 0.2989 ± 0.0077 0.2991 ± 0.0078 0.2969 ± 0.0074 0.2940 ± 0.0074

σ 8 . . . . . . . . . . . . . . . . . . . . 0.851+0.14
−0.091 0.783+0.095

−0.063 0.717+0.018
−0.022 0.711+0.017

−0.020

H0 . . . . . . . . . . . . . . . . . . . . 68.49 ± 0.61 68.46 ± 0.63 68.61 ± 0.59 68.83 ± 0.61

To compute the multidimensional integrals in equation (40) we
use the software package MULTINEST, as presented by Feroz & Hob-
son (2008). This program uses the Monte Carlo technique impor-
tance nested sampling to compute the relevant integrals. For further
details we refer the reader to Feroz & Hobson (2008). Moreover,
for the results that follow, we adopt a conservative threshold for in-
terpreting the bayes factor, specifically, we use the scale suggested
by Kass & Raftery (1995).

Given evidence calculations are more computationally demand-
ing than Markov chains, we do not include the velocity power spec-
trum likelihood in this calculation. Following the results above, we
observe there is no strong tension between the velocity measure-
ments and the �CDM model, hence we expect our conclusions (i.e.
the evidence ratio) will not be sensitive to this likelihood. With the
exclusion of the velocity likelihood, we use the remaining measure-
ments, as introduced above.

For a �CDM cosmology we find a global log-evidence of
ln(E�CDM) = −5423.75 ± 0.15. While allowing Gmatter and Glight

to vary we find, ln(EMG) = −5715.41 ± 0.14. Thus, we find an ev-
idence ratio of 2 log(EMG/E�CDM) = −5.83 × 102. This ratio sug-
gests ‘strong evidence’ in favour of the �CDM model. Or, equiv-
alently, ‘no support’ for our phenomenological model. One can
interpret this result as the extra parameters not significantly im-
proving the fit to data, yet increasing the complexity of the model;
accordingly, the model is strongly disfavoured.

For this calculation we include a theory prior on the parametrized
deviations to GR. This prior ensures we only consider parameter
combinations that produce positive C�’s. We expect this prior to
have a small impact on the final results for the following reasons.
First, the posterior distributions are localized with the prior vol-
ume. And, secondly, reducing the prior volume with this theory
prior one would improve the evidence towards the MG model. This
model is already strongly disfavoured, hence any shift would not
influence our conclusions. Had the MG model been favoured we
would have been required to carefully consider the influence of this
prior.

5.3 Checking systematics and astrophysical parameter
constraints

When calculating the power-spectrum multipole predictions, we
assumed a linear bias factor and linear perturbation theory. The
validity of both assumptions may be questioned. We examine, al-
beit crudely, the importance of these assumptions by determin-
ing the sensitivity of the parameter fits to the small-scale cut-off
kmax. For our model fits using the CMASS and WiggleZ multi-
pole likelihood calculations we ran new Markov chains using dif-
ferent cut-off values kCMASS

max = 0.10, 0.15 h Mpc−1and kWiggleZ
max =

0.15, 0.19 h Mpc−1. The results showed no statistically significant
shift when the fitting range was changed. However, we emphasize
that a detailed investigation of mock catalogues is needed to fully
validate these assumptions.

The astrophysical parameters for the multipole and direct PV
fits only vary slightly when using different data set combi-
nations, hence we choose to only present results from Set 4
(given in terms of 68 per cent CL). For the fit to the Wig-
gleZ multipole we find σv(z = 0.73) = 2.30+1.2

−1.8 h−1 Mpc, σv(z =
0.44) = 4.468+1.8

−1.0 h−1 Mpc, b1(z = 0.44) = 1.089 ± 0.042, and
b1(z = 0.73) = 1.207 ± 0.059. For the fit to CMASS we find
σv(z = 0.57) = 2.44+0.68

−1.2 h−1 Mpc, b1(z = 0.57) = 2.055 ± 0.084,
and N(Shot Noise) = 705 ± 200 h−3 Mpc3. Finally, from the fit
to the velocity power spectrum we determine the 95 per cent upper
limit σ PV(z= 0) < 334.6 km s−1. With different kmax values adopted,
one should not necessarily compare our results for the shot noise
and velocity dispersion with previous analysis; however, we find
our bias measurements to be consistent with previous analysis.

5.4 Previous measurements: summary and comparisons

Below we briefly summarize recent work in this field, with a focus
on results that adopt a similar parametrization.

(i) Daniel & Linder (2010) presented constraints on {G, V }, our
{Glight, Gmatter}, in bins of time and wavenumber. To constrain these
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parameters they used the following probes: WMAP7, supernova
Union2, CFHTLS weak-lensing data, temperature–galaxy cross-
correlation, and the galaxy power spectrum. They identify the
CFHTLS survey as responsible for a 2σ tension with GR in the
high-k and low-z bin for V . This feature is not observed when using
the COSMOS data or in subsequent analysis of the final CFHTLenS
catalogue (Heymans et al. 2012). Note RSD information was not
included, therefore the final constraints on V are of the order of ∼1.

(ii) Simpson et al. (2013) measure the parameters {�, μ} (i.e.
{Glight, Gmatter}) using tomographic weak-lensing measurements
from CFHTLenS and RSD measurements of fσ 8 from 6dFGS and
WiggleZ, in addition to WMAP7 (including low-l) and geometric
information (see also Dossett et al. 2015 and Zhao et al. 2012). Their
measurements are consistent with GR: they find μ = 1.05 ± 0.25
and � = 1.00 ± 0.14. For this fit they assumed �, μ are scale-
independent and adopt a specific functional form for their temporal
evolution: this effectively confines deviations to very low redshifts.
Measurements of the T–g cross-correlations, CMB-lensing, and the
growth-rate measurement from CMASS were not included in these
fits.

(iii) Planck Collaboration XIII (2015) have recently provided the
state-of-the-art measurements of post-GR parameters, placing con-
straints on an extensive range of specific and phenomenological
models. For the phenomenological model they adopt the parame-
ters {μ, η}, as implemented in MGCAMB. Motivated by f(R) models,
a specific functional form for the redshift and scale dependence
of these parameters is assumed. As appropriate to their aim, they
ensure their angular cuts to the tomographic shear–shear measure-
ments from CFHTLenS isolate the linear signal (see their fig. 2).
This approach is not adopted throughout, however. Their adopted
fσ 8(z = 0.57) measurement (by Samushia et al. 2014) was derived
by fitting the monopole and quadruple of the correlation function
on scales larger than 25 h−1 Mpc. As highlighted by the authors (see
their fig. 7) non-linear terms are significant on these length-scales,
the result is a dependence on non-linear physics.

In relation to the most up-to-date measurements, our results can
be distinguished in two main ways: First, the inclusion of the ve-
locity power-spectrum measurements, which improve low-k con-
straints; secondly, the methodology we use to analyse RSD mea-
surements, and the range of RSD measurements analysed. We argue
that the methodology of directly analysing the power-spectrum mul-
tipoles allows constraints to be derived that are more widely applica-
ble to non-standard cosmological models. This is because it allows
one to restrict the analysis to scales within the linear regime, where
the phenomenological model we use describe physical models (see
Section 1). Moreover, the multipoles contain scale-dependent infor-
mation, which is necessary if scale-dependent terms are introduced.

5.5 Parameter fits: Model II

We now explore fits to a new parameter space that is more
rigid regarding the allowed deviation to the growth history.
Two scenarios will be considered when fitting for these pa-
rameters, first, an expansion history fixed to �CDM; and sec-
ondly, an expansion history than can deviate from �CDM
via. a time-dependent equation of state. We define the two
parameter spaces as p1 = {γ, ωb, ωc, θMC, τ, ns, As}, and p2 =
{γ,w, wa, ωb, ωc, θMC, τ, ns, As}. We choose not to include the in-
fluence that deviations in the expansion history have on the expected
growth (that is, the relation γ = f(γ 0, w0, wa)) as the corrections
are currently small.

Note that by changing the growth rate we modify σ 8, this ef-
fect is included by altering the growth history well into the matter
dominated regime. The modified growth factor is calculated as

D(aeff ) = exp

(
−

∫ 1

aeff

da �m(a)0.55/a

)
, (41)

now we scale the fiducial prediction σ Fid
8 (zhigh) to find the modified

amplitude σ
γ
8 (zeff ):

σ
γ
8 (zeff ) = D(aeff )

D(ahigh)
σ Fid

8 (zhigh) . (42)

The first set of results, which assume a �CDM expansion history
are shown in Fig. 6. This plot shows the 68 per cent and 95 per cent
2D likelihood contours for the parameter combinations {�m, γ }
and {τ , γ }. The expected value of γ from GR is given by the
grey-dashed line. In addition to the growth rate and AP constraints,
these measurements are inferred using high-l + WMAP polarization
(WP) + low-z BAO (which we label in this section as base). For
fits in this section we do not use the low-l CMB T–T data or CMB
lensing, since we have not included the dependence of these signals
on γ . For the final constraint we measure γ = 0.665 ± 0.067, which
is consistent with GR at the 95 per cent CL.

The results for p2 are presented in Fig. 7, where we plot the 2D
likelihood contours (68 per cent and 95 per cent), and the marginal-
ized 1D probability distributions for γ , w0, wa, �m, τ . Again, the
black-dashed lines indicate the values expected from the standard
model; namely, γ = 0.55, w0 = −1, and wa = 0. The degraded
constraint on γ is a direct result of the degeneracy between the
expansion and growth histories: this is the reason we consider both
a fixed and non-fixed expansion history.

We use four different data set combinations to constrain these
parameters, they are defined as follows: fit 1 is the base sample,
fit 2 is base + WP, fit 3 is base + WP + SNLS, and fit 4 is
base + WP + JLA. We define base here as the combination High-
l + H0 + RSD/AP + low-z BAO. We use two SN samples in order
to understand how sensitive the growth index is to our choice of
adopted data set.

We will first discuss the main results, which are found using fit
3 and 4 (the red and blue contours in Fig. 7) and then consider how
the constraints are influenced by the different probes. Using fit 3 we
infer (in terms of 68 per cent CL) the marginalized constraints

w0 = −0.98+0.13
−0.15 , (43)

wa = −0.42+0.62
−0.47 , (44)

which are consistent with the standard model. In terms of deviation
to the growth history we measure (in terms of 68 per cent CL)

γ = 0.76+0.089
−0.087 . (45)

This result is at tension with GR at a level greater than 2σ . Changing
our SN sample to the JLA sample we find this tension is slightly
reduced. Using fit 4 we now measure

γ = 0.73+0.08
−0.10 , (46)

which is just consistent at the 2σ level, and for the expansion his-
tory we find w0 = −0.89+0.12

−0.12 and wa = −0.63+0.56
−0.45. Note, without

including any SN data, using fit 2 (the grey contour in Fig. 7) we
measure γ = 0.69+0.09

−0.11, which is consistent at the 95 per cent CL.
This may suggest there exists a mild tension between the growth
rate and the SN measurements. Finally, we note our measurements
of the growth index are relatively insensitive to the polarization
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Figure 6. 2D marginalized posterior distributions for {�m, γ } and {τ , γ }, assuming a �CDM expansion history. The contours are the 68 per cent and
95 per cent CL. Below we refer to base as the data set combination high-l + WP + low-z BAO. The green contours are found using base + CMASS, the grey
contours are found using base + WiggleZ, the red contours are founds using base + 6dFGS, and the blue contours show the combined fit to all the growth-rate
measurements plus the base measurements. Moreover, we include the AP and BAO information with the growth-rate constraints, without double counting BAO
measurements.

data, as can be observed in Fig. 7 by comparing the green (no WP)
and grey (including WP) contours.

Comparing the best-fitting values for the expansion history us-
ing only BAO measurements with the BAO + SN fit (which is
driven by SN) is interesting as it provides a test of the significance
of non-linear structure on SNe distance measurements (Clarkson
et al. 2012). With fit 2, which only uses the low-redshift BAO mea-
surements to constrain the expansion history, we infer (in terms
of 68 per cent CL) w0 = −0.68+0.29

−0.26 and wa = −1.27+0.92
−0.97. These

measurements are consistent at the 95 per cent CL with the stan-
dard model and the constraints from the SN + BAO fit; moreover,
they highlight the current necessity of Type Ia SN in placing tight
constraints on the redshift evolution of the equation of state. By in-
troducing the Lyman α BAO measurements into this fit we measure
w0 = −0.58+0.27

−0.22 and wa = −1.55+0.74
−0.89, which indicates a tension

with the standard model predictions at a level >2σ , in agreement
with the results by Font-Ribera et al. (2014). Further checks for sys-
tematics will be required to confirm this result given its significance
and the complexity of the measurement.

5.6 Comparison with previous results

Below we summarize a sub-sample of previous measurements of
the parameters {w0, wa, γ }.

(i) Beutler et al. (2014) measure γ = 0.772+0.124
−0.097 using the

power-spectrum multipoles from the DR11 CMASS sample and
Planck: this fit includes the AP effect, but does not allow for de-
viation in the expansion history. This value is consistent with the
measurement by Sánchez et al. (2013) of γ = 0.64 ± 0.26 found
using the clustering wedges of CMASS combined with BAO and
SNe measurements.

(ii) Rapetti et al. (2013) perform fits to {w0, γ } and γ . For a fixed
expansion history, using WMAP combined with galaxy cluster data
from ROSAT and Chandra, they measure γ = 0.415+0.128

−0.126. When
adding further data from RSD measurements (WiggleZ and 6dFGS)
they find γ = 0.570+0.064

−0.063.

(iii) Beutler et al. (2012) measure γ = 0.547 ± 0.088 using
WMAP7 and the two-point correlation function measured from
6dFGS. For this fit the expansion history is fixed, as the AP ef-
fect is not relevant. Note, there is a small difference between our
measurement of γ from 6dFGS and this result. This change is driven
by the preference for a higher �m in Planck compared to WMAP.

For this analysis, we extend the range of RSD measurements
used to constrain γ relative to Sánchez et al. (2013), Beutler et al.
(2014), and Rapetti et al. (2013). Moreover, relative to Rapetti et al.
(2013) we also use the updated Planck measurements as opposed to
WMAP. The final accuracy of our measurement of the growth index
improves upon Sánchez et al. (2013) and Beutler et al. (2014), given
the additional measurements we analyse. Note, our constraint on the
growth index disagrees with Rapetti et al. (2013) as we use different
data sets, and the two measurements have similar accuracy as we
choose to focus only on growth-rate measurements from RSD: we
do not include additional probes sensitive to the growth rate. This
position is motivated by recent suggestions that there exists some
tension between the predictions from a Planck cosmology and RSD
measurements (e.g. Macaulay, Wehus & Eriksen 2013).

6 C O N C L U S I O N S A N D D I S C U S S I O N

In search of departures from the standard cosmological model and
clues towards possible extensions, we have measured time- and
scale-dependent deviations to the gravitational field equations of
General Relativity. We model these deviations using the time and
scale-dependent parameters {Gmatter, Glight}. These parameters are
defined using 2 bins in time and 2 bins in scale. Gmatter modifies
the gravitational interaction for non-relativistic particles, and hence
alters structure formation, while Glight acts equivalently for rela-
tivistic particles, thus affecting how light propagates through the
universe.

To measure the eight parameters describing this model, plus
the six describing the standard model, we utilize a range of
cosmological probes including BAOs, Type Ia SNe, the CMB,
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Figure 7. 68 per cent and 95 per cent confidence regions for the most relevant parameters describing model II. The base sample of data sets, as referred to
above, represents the combination High-l + H0 + RSD/AP + low-z BAO.

CMB lensing, and the cross-correlation of the CMB with
large-scale structure probes. In addition, we include measurements
of the power-spectrum multipoles from the WiggleZ and CMASS
galaxy redshift samples, and the velocity power spectrum from
6dFGSv. Our motivation for adopting a phenomenological model
is to provide a set of results that can self-consistently be used to test
the widest possible range of models. To this end, we have focused
on only analysing measurements on scales within the linear regime.
We summarize our main results as follows.

(i) We perform a new measurement of the power-spectrum mul-
tipoles of the WiggleZ survey, featuring a new calculation of the

window function convolution effects and an improved determina-
tion of the covariance from N-body simulations.

(ii) Modelling deviation from General Relativity in terms of the
growth of large-scale structure, we find the following results, given
in terms of 68 per cent CL: Gmatter(z < 1; k > 0.01) = 0.65 ±
0.43, Gmatter(z < 1; k < 0.01) = 1.22+0.39

−0.34, Gmatter(z>1; k>

0.01) = 0.53 ± 0.32, Gmatter(z > 1; k < 0.01) = 0.87 ± 0.30.
These constraints are consistent with GR (i.e. Gmatter = 1) at the
95 per cent confidence level. We observe a small tension (>1σ ) for
the high-wavenumber and high-redshift bin.

(iii) Modelling deviation from General Relativity in terms of light
propagation, we derive the following constraints, given in terms
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of 68 per cent CL: Glight(z > 1; k > 0.01) = 1.057+0.053
−0.045, Glight

(z < 1; k < 0.01) = 1.048 ± 0.048, Glight(z < 1; k > 0.01) =
1.153+0.080

−0.068, Glight(z > 1; k < 0.01) = 1.016 ± 0.026. These cons-
traints are consistent with General Relativity at the 95 per cent con-
fidence level: the significant improvement in constraining power,
relative to Gmatter, is due to the sensitivity of the ISW effect and
CMB lensing to deviations in Glight.

(iv) We preform Bayesian model comparison between general
relativity and our phenomenological model. To do this we compute
the evidence for both models and take the ratio. Following the
scale suggested by Kass & Raftery (1995), the ratio of evidence
values suggests ‘no support’ for modifying general relativity. This
is consistent with the results from the posterior distributions.

(v) Adopting an alternative model, we introduce deviation in
the expansion and growth histories simultaneously by varying the
growth index and two parameters describing a redshift-dependent
equation of state. For this fit we utilize, among other probes, recent
growth-rate constraints from RSDs, as measured from the WiggleZ,
CMASS, and 6dF surveys. Our final result assuming a �CDM
expansion history (in terms of 68 per cent CL) is γ = 0.665 ± 0.067,
while allowing the expansion history to deviate from �CDM we
measure γ = 0.69+0.09

−0.11. Both these results are consistent with the
standard model; however, introducing SN measurements to this fit
(either SNLS or JLA) we find a ∼2σ tension with �CDM.

Probes of the velocity field of galaxies have an indispensable
role to play in addressing questions of the nature of DE as they
are uniquely sensitivity to only temporal perturbations. The obser-
vational data sets we have analysed are consistent with a vacuum
energy interpretation of DE; however, due to the magnitude of cur-
rent uncertainties any final conclusions drawn from these, and other
current, observations would be premature. In future analysis to-
mographic weak-lensing and galaxy–galaxy lensing measurements
will be included to improve our constraints; furthermore, we will
begin assessing the viability of specific models using the inferred
parameter constraints.
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